:::: MENU ::::
Allgemein

Modèle de markovitz

Harry Markowitz a présenté ce modèle en 1952. Il aide à la sélection des plus efficaces en analysant divers portefeuilles possibles des titres donnés. En choisissant des titres qui ne se déplacent pas exactement ensemble, le modèle HM montre aux investisseurs comment réduire leurs risques. Le modèle HM est également appelé modèle de variance moyenne en raison du fait qu`il est basé sur les rendements attendus (moyenne) et l`écart type (variance) des différents portefeuilles. Harry Markowitz a fait les hypothèses suivantes tout en développant le modèle HM: [11] [12] R1 est le rendement sans risque, ou le rendement des titres du gouvernement, puisque ces titres sont considérés comme n`ayant aucun risque à des fins de modélisation. R1PX est dessiné de sorte qu`il soit tangent à la frontière efficace. Tout point de la ligne R1PX montre une combinaison de différentes proportions de titres sans risque et de portefeuilles efficaces. La satisfaction qu`un investisseur obtient des portefeuilles sur la ligne R1PX est plus que la satisfaction obtenue du portefeuille P. Toutes les combinaisons de portefeuilles à gauche de P montrent des combinaisons d`actifs risqués et sans risque, et tous ceux à la droite de P représentent les achats d`actifs risqués réalisés avec des fonds empruntés au taux sans risque. Étant donné qu`une garantie ne sera achetée que si elle améliore les caractéristiques de rendement attendues du portefeuille de marché, la mesure pertinente du risque de sécurité est le risque qu`elle ajoute au portefeuille de marché, et non son risque isolé.

Dans ce contexte, la volatilité de l`actif, et sa corrélation avec le portefeuille de marché, sont historiquement observées et sont donc données. (Il existe plusieurs approches de la tarification des actifs qui tentent d`avoir des actifs de prix en modélisant les propriétés stochastiques des moments de rendement des actifs-elles sont généralement appelées modèles de tarification conditionnelle des actifs.) Étant une réalisation importante dans le domaine financier, la théorie a trouvé du terrain dans d`autres domaines aussi bien. Dans les années 1970, il a été largement appliqué dans le domaine des sciences régionales pour dériver la relation entre la variabilité et la croissance économique. De même, il a été utilisé dans le domaine de la psychologie sociale pour former l`auto-concept. Actuellement, il est utilisé par des experts pour modéliser des portefeuilles de projets d`instruments financiers et non financiers. Plus fondamentalement, les investisseurs sont coincés à estimer les paramètres clés des données du marché passées parce que le MPT tente de modéliser le risque en termes de probabilité de pertes, mais ne dit rien sur la raison pour laquelle ces pertes pourraient survenir. Les mesures de risque utilisées sont probabilistes de nature, non structurelles. Il s`agit d`une différence majeure par rapport à de nombreuses approches d`ingénierie de la gestion des risques. Un portefeuille efficace de Markowitz est l`un où aucune diversification supplémentaire ne peut abaisser le risque du portefeuille pour une attente de rendement donnée (alternativement, aucun rendement prévu supplémentaire ne peut être gagné sans augmenter le risque du portefeuille). La frontière efficace de Markowitz est l`ensemble de tous les portefeuilles qui donneront le rendement attendu le plus élevé pour chaque niveau de risque donné. Ces concepts d`efficience étaient essentiels au développement du modèle de tarification des immobilisations.

5. l`analyse est basée sur un modèle d`investissement d`une période unique. [12] modèle Harry Markowitz (modèle HM), également connu sous le nom de modèle de variance moyenne, car il est basé sur les rendements attendus (moyenne) et l`écart type (variance) des différents portefeuilles, aide à faire la sélection la plus efficace en analysant divers portefeuilles de les actifs donnés. Il montre aux investisseurs comment réduire leurs risques dans le cas où ils ont choisi des actifs ne pas «déménager» ensemble. Après le crash du marché boursier (en 1987), ils récompensent deux théoriciens, Harry Markowitz et William Sharpe, qui construisent magnifiquement des modèles platoniques sur une base gaussienne, contribuant ainsi à ce qu`on appelle la théorie du portfolio moderne. Simplement, si vous supprimez leurs hypothèses gaussiennes et traitez les prix comme évolutifs, vous êtes laissé avec l`air chaud.

Share via emailShare on Facebook+1Share on LinkedInPin it on PinterestShare on TwitterSubmit to reddit

Seitenanfang
Fragen und oder Angebote einholen ? Kontaktieren Sie uns